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  Abstract  

            

           The onset of double diffusive convection in a horizontal 

porous medium saturated by a nanofluid with Soret and Dufour 

effects has been studied using both linear and nonlinear 

stability analysis. The model used for the nanofluid 

incorporates the effects of Brownian motion and 

thermophoresis, while the modified Darcy model has been used 

for the porous medium that includes the time derivative term to 

model the momentum equation. The thermal energy equations 

include the diffusion and cross diffusion terms. The linear 

theory depends on normal mode technique and nonlinear 

analysis depends on a minimal representation of double Fourier 

series. The effects of Soret and Dufour parameters, Solutal 

Rayleigh number on the stationary and oscillatory convections 

are presented graphically. It is found that for stationary mode 

Soret parameter and Dufour parameter have a stabilizing effect 

while Solutal Rayleigh number destabilize the system and for 

oscillatory mode Soret parameter, Dufour parameter have a 

stabilizing effect while Solutal Rayleigh number destabilize the 

system. We also study the effect of time on transient Nusselt 

numbers which is found to be oscillatory when time is small. 

However, when time becomes very large all the three transient 

Nusselt values approaches to the steady value. 
 

Keywords: 

Nanofluid, porous medium, 

natural convection, 

horizontal layer, conductivity 

and viscosity variation, 

Brownian motion and 

thermophoresis. 

 

 

*Department of Mathematics, Gulbarga University, Karnataka, India. 

** Department of Mathematics, Gulbarga University, Karnataka, India. 

*** Department of Mathematics, Govt First Grade college, Bidar, Karnataka, India. 

 



 ISSN: 2347-6532   Impact Factor: 6.660  

12 International Journal of Engineering and Scientic Research 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

1. Introduction 

The study of nanofluid has become increasingly important in the last few decades. This is mainly 

due to their applications in electronics, automotive, high flux solar collectors, and nuclear 

applications where improved heat transfer or efficient heat dissipation is required  Wong and 

Leon [1]. Nanofluid is a dilute suspension of solid nanoparticles (1–100 nm diameters) in 

conventional liquids like water, ethylene or tri-ethylene-glycols, and oil. Depending on size, 

shape, and thermal properties of the nanoparticles,the thermal conductivity can be increased by 

about 40% with low concentration (1%–5% by volume) of solid nanoparticles in the mixture 

Eastman et al [2]. Buongiorno [3] deduced the governing equations for nanofluid incorporating 

the effects of Brownian diffusion and thermophoresis.  The problem of double diffusive 

convection in porous media has attracted considerable interest during the last few decades 

because of its wide range of applications, from the solidification of binary mixtures to the 

migration of solutes in water-saturated soils, geophysical systems, electrochemistry and the 

migration of moisture through air contained in fibrous insulation. 

 

A comprehensive review of the literature concerning double diffusive convection in a fluid-

saturated porous medium may be found in the book by Nield and Bejan[4]. The study of double 

diffusive convection in porous medium is first under taken by Nield [5] on the basis of linear 

stability theory for various thermal and solutal boundary conditions. 

 

Excellent reviews of these studies have been reported by Turner [6-8], Huppert and Turner [9] 

and Platten and Legros [10]. The interest in the study of two or multi component convection has 

developed as a result of the marked difference between single component and multi component 

systems. In contrast to single component system, convection sets is even when density decreases 

with height, that is, when the basic state is hydrostatically stable. The double diffusive 

convection is of importance in various fields such as high quality crystal production, liquid gas 

storage, oceanography, production of pure medication, solidification of molten alloys, and 

geothermally heated lakes and magmas. 

 

In a system where two diffusing properties are present, instabilities can occur only if one of the 

components are destabilizing. When heat and mass transfer occur simultaneously in a moving 
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fluid, the relation between the fluxes and the driving potentials are of more intricate in nature. It 

has been found that an energy flux can be generated not only by temperature gradient but also by 

composition gradients as well. The energy flux caused by a composition gradient is called the 

Dufour or diffusion thermo effect. On the other hand, mass fluxes can also be created by 

temperature gradients and this is the Soret or thermal-diffusion effect. If the cross-diffusion 

terms are included in the species transport equations, then the situation will be quite different. 

Due to the cross-diffusion effects, each property gradient has a significant influence on the flux 

of the other property. The double diffusive convection in a porous medium in the presence of 

Soret and Dufour coefficients has been analyzed by Rudraiah and Malashetty [11] and extended 

to weak non-linear analysis by Rudraiah and Siddheshwar [12]. 

 

Many studies on the thermal instability of nanofluids have been conducted by Kuznetsov and 

Nield [13] and Nield and Kuznetsov [14]. Kuznetsov and Nield [15] studied the onset of thermal 

instability in a porous medium saturated by a nanofluid using Brinkman model, and 

incorporating the effects of Brownian motion and thermophoresis of nanoparticles. They 

concluded that the critical thermal Rayleigh number can be reduced or increased by a substantial 

amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy, 

by the presence of the nanoparticles. The corresponding Horton–Rogers–Lapwood Problem was 

investigated by Nield and Kuznetsov [14] for the Darcy Model. Nield and Kuznetsov Agarwal et 

al. [16] studied thermal instability in an anisotropic rotating porous layer saturated by a nanofluid 

for top heavy and bottom heavy suspension considering Darcy Model. Bhadauria and Agarwal 

[17] studied natural convection in a rotating porous layer saturated by a nanofluid using the 

Brinkman’s Model. 

 

 For the preparation of nanofluids, instead of using a pure liquid as basefluid, when a 

binary liquid is used, it is termed as a binary nanofluid. These binary liquids can be salty water, 

Ferro fluid etc. These binary nanofluids find their utility as a working fluid in absorption 

refrigeration, as a solution in electro or electro less plating and as a transfer medium in medical 

treatment. Onset of convection in binary fluids has been studied by Kim et al. [18], Kuznetsov 

and Nield [19] and Kuznetsov and Nield [13]. In case of nanofluids, we come across two 
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different Soret effects: one induced by the solute, while the other being contributed by the 

nanoparticles. 

 

Using the approach employed by Tiwari and Das [20], we tend to investigate the contribution of 

both Soret and Dufour effects in convection in binary nanofluids. The important objective of this 

study is to perform nonlinear stability analysis of the problem using the minimal representation 

of Fourier series to compute heat and mass transports. 

 

2. Analysis 

2.1 Conservation Equation for a Nanofluid  

We select a coordinate frame in which the z-axis is aligned vertically upwards. We consider a 

horizontal layer of fluid confined between the planes z* = 0 and z* = H. Asterisks are used to 

denote dimensional variables. Each boundary wall is assumed to be perfectly thermally 

conducting. The temperatures at the lower and upper boundary are taken to be   * *

0T T and *T . 

The Oberbeck Boussinesq approximation is employed. In the linear stability theory being applied 

here, the temperature change in the fluid is assumed to be small in comparison with *

0T . The 

conservation equation takes the form 

* *. 0D v                                                                                                                                                                                                 

(1) 

Here, *

Dv  is the nanofluid Darcy velocity. We write  * * * *, ,D u v wv  .  

In the presence of thermophoresis, the conservation equation for the nanoparticles, in the absence 

of chemical reactions, takes the form 

1
. .D B T

T
D D

t T


 



  
    

 

  
      

  
v                         (2) 

where    is the nanoparticle volume fraction,   is the porosity, T  is the temperature, BD  is the 

Brownian diffusion coefficient, and TD  is the thermophoretic diffusion coefficient. 

If one introduces a buoyancy force and adopts the Boussinesq approximation, and uses the Darcy 

model for a porous medium, then the momentum equation can be written as 

*

*

D*
g

effD p
Kt






 
   



v
v                                           

(3) 
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Here   is the overall density of the nanofluid, which we now assume to be given by 

     * * * * *

p 0 T 0 01 1 CT T C C              
 

                                                        

(4) 

where p  is the particle density, 
0  is a reference density for the fluid, and 

T  is the thermal 

volumetric expansion coefficient and C  is the analogous solutal coefficient. The thermal energy 

equation for a nanofluid can be written as  

     
* *

* * *2 * * * *2

D m B T *m f p
0

.
. . TC

T T T
c c T k T c D T D c D C

t T
     


  



   
          

  
v                   (5) 

Here c is the fluid specific heat (at constant pressure), mk   is the overall thermal conductivity of 

the porous medium saturated by the nanofluid, pc is the nanoparticle specific heat of the material 

constituting the nanoparticles, TCD  is a diffusivity of Dufour type.  

To this we add a conservation equation for the solute of the form 

*
* * * *2 * *2 *

*

1
.D Sm CT

C
V C D C D T

t 


     


                                        

(6) 

Where S mD is the solutal diffusivity for the porous medium and CTD  is a diffusivity of Soret type. 

It has been assumed that the nanoparticles do not affect the transport of the solute. 

Thus, 

(1 )m eff sk k k                                                                                                                                                                                  

(7) 

where   is the porosity, effk  is the effective conductivity of the nanofluid (fluid plus 

nanoparticles), and sk is the conductivity of the solid material forming the matrix of the porous 

medium. 

We now introduce the viscosity and the conductivity dependence on nanoparticle fraction. 

Following Tiwari and Das [20], we adopt the formulas, based on a theory of mixtures, 

* 2.5

1

(1 )

eff

f



 



                                                                                                                                                                                    

(8) 
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*

*

( 2 ) 2 ( )

( 2 ) ( )

eff p f f p

f p f f p

k k k k k

k k k k k





  

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(9) 

Here fk and pk are the thermal conductivities of the fluid and the nanoparticles, respectively. 

Equation (8) was obtained by Brinkman [21], and (9) is the Maxwell-Garnett formula for a 

suspension of spherical particles that dates back to Maxwell [22]. 

In the case where *  is small compared with unity, we can approximate these formulas by 

*1 2.5
eff

f





  ,       

*

*

*

( 2 ) 2 ( ) ( )
1 3

( 2 )( 2 ) ( )

eff p f f p p f

f p fp f f p

k k k k k k k

k k kk k k k






   
  

  
                                                                   

(10) 

We assume that the temperature and the volumetric fraction of the nanoparticles are constant on 

the boundaries. Thus the boundaries conditions are 

* * * * * *

0 00, ,w T T T       at * 0z  ,          * * * * *

0 10, ,w T T      at *z H                                                    

(11) 

We introduce dimensionless variables as follows. We define  

* * * * 2( , , ) ( , , ) / , /mx y z x y z H t t H   , * * * *( , , ) ( , , ) / , /m f mu v w u v w H p p K    ,   

* * * *

0 0

* * *

1 0

,
T T

T
T

 


 

 
 

 
                                                                                                                                                         

(12)                                                           

where 

( )
,

( ) ( )
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m

p f p f
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c c


 

 
   

We also define 

,
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


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f
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k
 ,   s

s
f

k
k

k
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f

k
k

k
                                                                                                                             

(13)                                                                                   

From  (7), (10) and (13) we have 

* * *
0 1 01 2.5[ ( )]        , * * *

0 1 0

1
1 3[ ( )] (1 )

2

p

s

p

k
k k

k
     
  

      
  


 


                                                              

(14) 

Then (1) and (3) with (4), (5), (2), (11) take the form: 
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. 0 v                                                                                                                                                                                                     

(15) 

 ˆ ˆ ˆ ˆ/a z T z z zp Rme Ra Te Rs Le Ce Rn e
t

  


      


v
v                                                                                             

(16) 

2 2. . .B A B

T C

N N NT
T k T T T T N C

t Ln Ln



           


v                                                                                             

(17) 

2 21 1 1
. CT

C
C C N T

t Le 


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
v                                         

(18) 

2 21 1 1
. AN

T
t Ln Ln


 

 


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
v                                                                                                                                            

(19) 

0, 1, 1, 0 0w T C at z     ,  0, 0, 0, 0 1w T C at z                                                                  

(20) 

Here 

a
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
 

The parameter  a  is the non dimensional acceleration coefficient, Ln  is a thermo-nanofluid 

Lewis number, Va  is a Vadász number, TRa  is the familiar thermal Rayleigh–Darcy number,  Pr 

is the Prandtl number, Da is the Darcy number, Rs is the familiar solutal Rayleigh number, The 

new parameters Rm and Rn may be regarded as a basic-density Rayleigh number and a 

concentration Rayleigh number, respectively. The parameter AN  is a modified diffusivity ratio 

and is some what similar to the Soret parameter that arises in cross-diffusion phenomena in 

solutions, while BN  is a modified particle-density increment, Le is the familiar thermo-solutal 

Lewis number, 
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In the spirit of the Oberbeck–Boussinesq approximation, (16) has been linearized by the neglect 

of a term proportional to the product of   and T. This assumption is likely to be valid in the case 

of small temperature gradients in a dilute suspension of nanoparticles. 

 

2.2. Basic solution 

We seek a time-independent quiescent solution of (15)–(20) with temperature and nanoparticle 

volume fraction varying in the z-direction only that is a solution of the form 

0, ( ), ( ), ( ), ( )b b b bp p z T T z C C z z     v                                                                                                                     

(21) 

Equations (16)-(19) reduces to 

 0 /b
T b b b

dp
Rm Ra T Rs Le C Rn

dz
                                                                                                                            

(22) 

22 2

2 2
0b b b bB A B

T C

d T d dT d CN N N
k N

Ln dz Ln dzdz dz

  
    

 

                                                                                                           

(23) 

2 2

2 2

1
0b b

CT

d C d T
N

Le dz dz
                                           

(24) 

2 2

2 2
0b b

A

d d T
N

dz dz


                                                                                                                                                                           

(25) 

According to Buongiorno [3], for most nanofluids investigated so far  1 0Ln     is large, of 

order
510 –

610 , and since the nanoparticle fraction decrement is typically no smaller than
310 this 

means so that Ln is large, of order 
210 –

310 , while AN  is no greater than about 10. Using this 

approximation, the basic solution is found to be 

zTb 1 , 1bC z   and so b z                                                                                                                                             

(26) 

 

2.3. Perturbation solution 

We now superimpose perturbations on the basic solution. We Write 
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'v v   , 'bp p p  , 'bT T T  , 'bC C C  , 'b                                                                                                   

(27) 

substitute in (13)–(19), and linearize by neglecting products of primed quantities. The following 

equations are obtained when (26) is used. 

. ' 0 v ,                                                                                                                                                                                                  

(28) 

 
'

ˆ ˆ ˆ' ' ' / ' 'a T z z zp Ra T e Rs Le C e Rn e
t

  


     


v
v ,                                                                                                  

(29) 

2 22' ' ' '
' ' ',B A B

T C

N N NT T T
w k T N C

t Ln z z Ln z

    
        

    

                                                                                  

(30)           

2 21 ' 1 1
' CT

C
w C N T

t Le 


    


,                                        

(31)           

2 21 ' 1 1
' 'AN

w T
t Ln Ln




 


    


                                                                                                                                           

(32)               

' 0w  , ' 0T  , ' 0, ' 0C   at 0z and at z = 1,               

 (33) 

where now we can approximate the viscosity and conductivity distributions by substituting the 

basic solution expression for  , namely that given by  (26), into (14), we obtain 

* * *
0 1 0( ) 1 2.5 ( ) ,z z        

 
  * * *

0 1 0

1
( ) 1 3 (1 )

2

p

s

p

k
k z z k

k
     
             


 


                                     

(34) 

It will be noted that the parameter Rm  is just a measure of the basic static pressure gradient and 

is not involved in these and subsequent equations. 

We now recognize that we have a situation where properties are heterogeneous. These are now 

the viscosity and conductivity (rather that the more usual ones, namely permeability and 

conductivity) and we can now proceed as in a number of papers by the authors that are surveyed 

by Nield [23]. We assume that the heterogeneity is weak in the sense that the maximum variation 
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of a property over the domain considered is small compared with the mean value of that 

property. 

The seven unknowns u , v , w ,p ,T , ',C      can be reduced to four by operating on (29) with zê curl 

curl and using the identity curl curl   grad div -
2  together with (28) and the weak 

heterogeneity approximation. The result is 

   2 ' 2 2 2 '( ) ' / 'a T H H Hz s w Ra T Rs Le C Rn                                                                                                        

(35) 

Here 
2

H  is the two-dimensional Laplacian operator on the horizontal  plane. 

The differential (35), (29), (30), (31), (32) and the boundary conditions (33) constitute a linear 

boundary-value problem that can be solved using the method of normal modes. 

We write 

     ', ', ', ' ( ), ( ), ( ), ( ) expw T C W z z z z st ilx imy                                                                                                    

(36) 

and substitute into the differential equations to obtain 

    2 2 2 2 2( ) / 0a Tz s D W Ra Rs Le Rn                                                                                        

(37) 

   2 2 2 22
( ) 0B A B B

TC

N N N N
W D k z D D s D N D

Ln Ln Ln
 

 
          
 

                                                

(38) 

 2 2 2 21 1 1
0CTW D s N D

Le
 

 

 
        

 
                                                                                                           

(39) 

   2 2 2 21 1 1
0AN

W D D s
Ln Ln

 
 

 
       

 
                                      

(40) 

0, 0, 0, 0W       at 0z   and 1z                                                                                                                         

(41) 

where 

d
D

dz
  and  2 2 1/2( )l m    .                                                                                                                                                         

(42) 
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Thus   is a dimensionless horizontal wave number. 

For neutral stability the real part of s is zero. Hence we now write is  , where   is real and is 

a dimensionless frequency. 

We now employ a Galerkin-type weighted residuals method to obtain an approximate solution to 

the system of  (37)–(41). We choose as trial functions (satisfying the boundary conditions) 

, , , ; 1,2,3......p p p pW p     and write 

W=
1

N

p p

p

A W



 ,
1

N

p P

p

B



   ,
1

N

p p

p

C



  ,
1

N

p P

p

D



                                                                                             

(43) 

substitute into (37)–(41), and make the expressions on the left-hand sides of those equations (the 

residuals) orthogonal to the trial functions, thereby obtaining a system of 4N linear algebraic 

equations in the 4N unknowns , ,p p pA B C , pD , p =1, 2, . . . N. The vanishing of the determinant of 

coefficients produces the eigenvalue equation for the system. One can regard TRa  as the 

eigenvalue. Thus TRa  is found in terms of the other parameters. 

Trial functions satisfying the boundary condition (41) can be chosen as 

sinp p p pW p z       ; p = 1, 2, 3, …                                                        

(44) 

The eigenvalue equation is 

det M = 0    

 (45) 

where, 

  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

M M M M

M M M M
M

M M M M

M M M M

 
 
 
 
 
  

                                                                                                                       

(46) 

and, for i, j = 1, 2, …, N. 

       2 2

11 a j i a j iij
M z s W D W z s W W           
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 

   

 

2

12

2

13

2

14

/

T j iij

j iij

j iij

M Ra W

M Rs Le W

M Rn W







  

  

 

 

 21 j iij
M W    

     2 2

22

2 A B B

j i j i j i j iij

N N N
M k z D k z s D

Ln Ln


 
              

 

   

 

 

2 2

23

24

TC j i TC j iij

B

j iij

M N D N

N
M D

Ln

      

  
 

 

 

 

 

 

   

31

2 2

32

2 2

33

34

41

2 2

42

1

1

0

1

j iij

CT i j CT i jij

j i j i j iij

ij

j iij

A

j i j iij

M W

M N D N

s
M D

Le

M

M W

N
M D

Ln












  

      

 
          

 



  

     

 

 43 0
ij

M   

   2 2

44

1
j i j i j iij

s
M D

Ln



          

Here 

   
1

0

.f z f z dz                          (47) 

In the present case, where viscosity and conductivity variations are incorporated, the critical 

wavenumber is unchanged and the stability boundary becomes 
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   

1

2

3

2

2

1 1

1

TC

T

TC CT a

CT

A

JN J s s J s
Ra J

Ln Le Ln

J s J s s J s
J J J N N s

Le Ln Ln

Rs J s J s J s
JN

Le Ln Ln

N J s
Rn J

Le Ln

   


  



  






     
         

     

      
            

      

     
         

     

 
 

 

CTA

TC

JNN JJ s s
J JN

Le Ln   

 
 
 
 
 
 
 
       

                 

                                                                     

(48) 

where 

J  =  2 2( )  ,  * *
1 01 1.25      

 * *
1 03 1

(1 )
2 2

p

s

p

k
k

k

  
  

  
    
  





                                                                                                                                  

(49) 

We observe that when there is no conductivity variation (that is 1,  as when 1sk  and 1)pk   

the effect of viscosity variation is to increase the critical Rayleigh number by a factor  . The 

additional effect of conductivity variation   is expressed by (49). When 1sk  , the maximum 

value of   is 2.5  * *
1 0   attained when 1  and pk  . 

 It is worth noting that the factor  comes from the mean value of   z  over the range 

[0,1] and the factor   is the mean value of  k z  over the same range. That means that when 

evaluating the critical Rayleigh number it is a good approximation to base that number on the 

mean values of the viscosity and conductivity based in turn on the basic solution for the 

nanofluid fraction.  

 

3. Linear Stability Analysis 

3(a). Stationary Mode 

 

For the validity of principle of exchange of stabilities (i.e., steady case), we have s = 0 

 . ., 0r i r ii e s s is s s      at the margin of stability. For a first approximation we take 1N  . Then 

the Rayleigh number at which marginally stable steady mode exists becomes, 
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 

   

   

1

2

3

2

2

1 1St TC

T

TC CT

CT

CTA A

TC

JN J J
Ra J

Ln Le Ln

J J J
J J J N N

Le Ln Ln

Rs J J J
JN

Le Ln Ln

JNN J N JJ
Rn J J JN

Le Ln Le Ln








  



    
     

    

     
        
      


                   
     

       
    










 
 

                                                                                              

(50) 

In the case of double diffusion in a regular fluid, when ,TC CTN N and AN  are all zero,  (50) 

reduces to 0

St

TRa Rs R ,   where ( 2

0 4 39 48R .   with 3 14c .   )as expected. (See, for example, 

Nield [5].) The stationary boundary does not depend on the value of Pr. 

 

3(b). Oscillatory Mode 

We now set s i , where   Im 0r    in (48) and clear the complex quantities from the 

denominator, to obtain 

1 2TRa i                                                                                                                                                                                     

(51) 

For oscillatory onset 2 0    0i  and this gives a dispersion relation of the form (on dropping 

the subscript i) 

   
2

2 2

1 2 3 0b b b                                             

(52) 

Now Eq. (48) with 2 0   gives 

 2

0 1 2

Osc

TRa a a a                                                            

(53) 

where 1 2, ,b b and 3b  and 0 1, ,a a  and 2a  and  1 and 2 are not presented here for brevity. 

  

We find the oscillatory neutral solutions from (53). It proceeds as follows: First determine the 

number of positive solutions of (42). If there are none, then no oscillatory instability is possible. 

If there are two, then the minimum (over 2a ) of  (53) with 2 given by  (52) gives the oscillatory 

neutral Rayleigh number. Since (52) is quadratic in 2 , it can give rise to more than one positive 
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value of 2  for fixed values of the parameters Rn, Ln, , , ,A aN    and  . However, our numerical 

solution of (52) for the range of parameters considered here gives only one positive value of 2  

indicating that there exists only one oscillatory neutral solution. The analytical expression for 

oscillatory Rayleigh number given by (53) is minimized with respect to the wavenumber 

numerically, after substituting for 2 (> 0) from (52), for various values of physical parameters in 

order to know their effects on the onset of oscillatory convection. 

 

4. Non – Linear stability analysis 

For simplicity, we consider the case of two dimensional rolls, assuming all physical quantities to 

be independent of y. Eliminating the pressure and introducing the stream function we obtain: 

  21 0a T

T Rs C S
s Ra Rn

x Le x x


   
      

   
                                                                                                                    

(54) 

 

 
2 2

,

,
TC

TT
T N C

t x x z

  
     

  
                                                                                                                                      

(55) 

2 21 1 1 1 ( , )

( , )

ANS S
S T

T x Ln Ln x z  

   
     

  
                                                                                                                     

(56) 

2 21 1 1 1 ( , )

( , )
CT

C C
C N T

T x Le x z  

   
     

  
                                                                                                                    

(57) 

We solve (54)–(57) subjecting them to stress-free, isothermal, iso-nanoconcentration boundary 

conditions: 

2

2
0T S C

z





    


 at z = 0, 1                                                                                          

To perform a local non-linear stability analysis, we take the following Fourier expressions: 

     
1 1

mn

n m

A t sin m x sin n z  
 

 

                                                                                         

   
1 1

( ) cos
m n

n m

T B t m x sin n z 
 

 

                                                                                         

1 1

( ) cos ( ) ( )
m n

n m

S C t m x sin n z 
 

 

                                                                                      
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1 1

( ) cos ( ) ( )
m n

n m

C D t m x sin n z 
 

 

                                                                                                                                         

(58) 

Further, we take the modes (1, 1) for stream function, and (0, 2) and (1, 1) for temperature, and 

nanoparticle concentration, to get 

11( ) ( ) ( )A t sin x sin z                                                                                                           

11 02( )cos ( ) ( ) ( ) (2 )T B t x sin z B t sin z                                                                                  

11 02( )cos ( ) ( ) ( ) (2 )S C t x sin z C t sin z        

11 02( )cos ( ) ( ) ( ) (2 )C D t x sin z D t sin z                                                                                                                             

(59) 

where the amplitudes 11( )A t , 11( )B t , 02 ( )B t , 11( )C t , 02 ( )C t , 11( )D t and 02 ( )D t  are functions of time and 

are to be determined. 

Taking the orthogonality condition with the eigenfunctions associated with the considered 

minimal model, we get 

211 11

11 11 112

( ) ( )1
( ) ( ) ( )T

a

dA t Rs D t
RnC t Ra B t A t

dt Le


  

 

 
    

 
                                                                                         

2 211

11 11 11 02 11( ) ( ) ( ) ( ) ( )TC

dB
A t B t A t B t N D t

dt
                                                                                     

2 202

02 11 11 024 ( ) ( ) ( ) 4 ( )
2

TC

dB
B t A t B t N D t

dt


                                                                                             

211 11

11 11 11 02

( )1 1
( ) ( ) ( ) ( )AdC C t N

A t B t A t C t
dt Ln Ln

   
 

  
     

  
                                                 

2 202

02 02 11 11

1
4 ( ) 4 ( ) ( ) ( )

2

A
dC N a

C t B t A t C t
dt Ln Ln


  



 
    

 
         

211 11

11 11 11 02

( )1 1
( ) ( ) ( ) ( )CT

dD D t
A t N B t A t D t

dt Le
   

 

  
     

  
                   

2 202

02 02 11 11

1
4 ( ) 4 ( ) ( ) ( )

2
CT

dD a
D t B t N A t D t

dt Le


  



 
    

 
                                                                                           

(60) 

In case of steady motion  
 

0i

d
D

dt
  , (i = 1, 2, .., 7) and write all 'iD s  in terms of 11A . 

Thus we get 
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211

1 11 11 112

( )1
( ) ( ) ( )T

a

Rs D t
D RnC t Ra B t A t

Le


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 

 
    

 
                                                                                       

2 2

2 11 11 11 02 11( ) ( ) ( ) ( ) ( )TCD A t B t A t B t N D t                                                                                        

2 2

3 02 11 11 024 ( ) ( ) ( ) 4 ( )
2

TCD B t A t B t N D t


                                                                                               

2 11

4 11 11 11 02

( )1 1
( ) ( ) ( ) ( )AC t N

D A t B t A t C t
Ln Ln

   
 

  
      

  
                                                  

2 2

5 02 02 11 11

1
4 ( ) 4 ( ) ( ) ( )

2

AN a
D C t B t A t C t

Ln Ln


  



 
    

 
       

2 11

6 11 11 11 02

( )1 1
( ) ( ) ( ) ( )CT

D t
D A t N B t A t D t

Le
   

 

  
      

  
               

2 2

7 02 02 11 11

1
4 ( ) 4 ( ) ( ) ( )

2
CT

a
D D t B t N A t D t

Le


  



 
    

 
                                

And  1D = 2D  =  3D  =  4D  =  5D  = 6D  = 7D  = 0                                                                                                                     

(61) 

The above system of simultaneous autonomous ordinary differential   equations   is    solved 

numerically using Runge–Kutta–Gill method. One may also conclude that the trajectories of the 

above equations will be confined to the finiteness of the ellipsoid. Thus, the effect of the 

parameters Rn, Ln, AN on the trajectories is to attract them to a set of measure zero, or to a fixed 

point to say. 

 

5. Heat and Nanoparticle Concentration Transport 

The Thermal Nusselt number  NuT  is defined as 

NuT
Heat transport by (conduction convection)

Heat transport by conduction


                              

                            

2

0

2 /

0 0

1
a

B

z

T
dx

z

T
dx

z







 
 

  
 
 

  





                                                                                                            

Substituting expressions (26) and (59) in above equation we get 

021 2 ( )NuT B t   
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The nanoparticle concentration Nusselt number NuF  is defined similar to the thermal Nusselt 

number. Following the procedure adopted for arriving at NuT , one can obtain the expression for 

NuF  in the form: 

 02 021 2 ( )) (1 2 ( )ANuF C t N B t      

The solute concentration Nusselt number NuC is defined similar to the thermal Nusselt number. 

Following the procedure adopted for arriving at NuT, one can obtain the expression for NuC in 

the form: 

 02 021 2 ( )) (1 2 ( )CTNuC D t N B t      
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Figure 1. Neutral curves on stationary convection for different values of (a) Soret   parameter 

CTN , (b) Dufour parameter TCN , (c) Solutal Rayleigh number Rs. 
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Figure 2.  Neutral curves on oscillatory convection for different values of (a) Soret   parameter 

CTN , (b) Dufour parameter TCN , (c) Solutal Rayleigh number Rs. 
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Figure 3. Variation of Thermal Nusselt number NuT with critical Rayleigh Number for different 

values of (a) Soret   parameter CTN , (b) Dufour parameter TCN , (c) Solutal Rayleigh number Rs. 
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Figure 4. Variation of nanoparticle concentration Nusselt number NuF with critical Rayleigh 

Number for different values of (a) Soret   parameter 
CTN , (b) Dufour parameter 

TCN , (c) Solutal 

Rayleigh number Rs. 
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Figure 5. Variation of solute concentration Nusselt number NuC with critical Rayleigh Number 

for different values of (a) Soret   parameter CTN , (b) Dufour parameter TCN , (c) Solutal Rayleigh 

number Rs. 
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Figure 6. Transient Thermal Nusselt number NuT with  time for different values of  

(a) Nanoparticle concentration Rayleigh number Rn, (b) Thermo-nanofluid Lewis number Ln, 

(c) Modified diffusivity ratio AN , (d) Solutal Rayleigh number Rs,  (e) Viscosity ratio  , (f) 

Conductivity ratio  , (g) Vadász number Va. 
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Figure 7. Transient nanoparticle concentration Nusselt number NuF with  time for different 

values of (a) Nanoparticle concentration Rayleigh number Rn, (b) Thermo-nanofluid Lewis 
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number Ln, (c) Modified diffusivity ratio 
AN , (d) Solutal Rayleigh number Rs,  (e) Viscosity 

ratio  , (f) Conductivity ratio  , (g) Vadász number Va. 
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Figure 8. Transient solute concentration Nusselt number NuC with  time for different values of 

(a) Nanoparticle concentration Rayleigh number Rn, (b) Thermo-nanofluid Lewis number Ln, 

(c) Modified diffusivity ratio AN , (d) Solutal Rayleigh number Rs,  (e) Viscosity ratio   , (f) 

Conductivity ratio  , (g) Vadász number Va. 

 

6. Results and discussions 

The expressions of thermal Rayleigh number for stationary and oscillatory convections are given 

by (50) and (53) respectively.Figure 1a-c shows the effect of various parameters on the neutral 

stability curves for stationary convection for Rn = -0.1, Ln = 50, AN  = 4,    = 0.9,   = 1,   = 1, 

TCN  = 0.001, Rs = 5, Le = 0.75, CTN  = 1 with variation in one of these parameters. The effect of 

Soret parameter CTN  and Dufour parameter TCN   on the thermal Rayleigh number is shown in 

Figs . 1a and 1b respectively, it can be seen that as CTN  and TCN  increases TRa  increases and 

hence CTN  and TCN  have a stabilizing effect on the system. From Fig. 1c, one can observe that as 

Solutal Rayleigh number Rs increases, thermal Rayleigh number decreases which means that the 

Solutal Rayleigh number Rs advances the onset of convection. The effect of Soret parameter CTN

, Dufour parameter TCN  and Solutal Rayleigh number Rs on thermal Rayleigh number TRa  for 

stationary convection show the similar results obtained by Agarwal et al. [24].  

 

Figure 2a-c displays the variation of thermal Rayleigh number for oscillatory convection with 

respect to various parameters. The effect of Soret parameter CTN  and Dufour parameter TCN  on 

the thermal Rayleigh number is shown in Figs. 2a and 2b respectively, it is seen that as CTN  and 
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TCN  increases 
TRa  increases and hence 

CTN  and 
TCN  have a stabilizing effect on the system. 

From Fig. 2c, one can observe that as Solutal Rayleigh number Rs increases, thermal Rayleigh 

number decreases which means that the Solutal Rayleigh number Rs advances the onset of 

convection.  

 

The nonlinear analysis provides not only the onset threshold of finite amplitude motion but also 

the information of heat and mass transports in terms of thermal Nusselt number NuT, 

nanoparticle concentration Nusselt number NuF and solute concentration Nusselt number NuC 

Nusselt numbers. The Nusselt numbers are computed as the functions of TRa , and the variations 

of these non-dimensional numbers with TRa  for different parameter values are depicted in Figs. 

3a-c, 4a-c and 5a-c respectively. In Figs. 3a-c, 4a-c and 5a-c it is observed that in each case, 

nanoparticle concentration Nusselt number NuF is always greater than both thermal Nusselt 

number NuT and solute concentration Nusselt number NuC Nusselt number and all Nusselt 

number start with the conduction state value 1 at the point of onset of steady finite amplitude 

convection. When TRa  is increased beyond T cRa , there is a sharp increase in the values of Nusselt 

numbers. However further increase in TRa  will not change Nu and Sh significantly. It is to be 

noted that the upper bound of NuT is 3 (similar results were obtained by Malashetty et al. [25]). 

It should also be noted that the upper bound of NuF and NuC are not 3 (similar results were 

obtained by Bhadauria et al. [17]). The upper bound of NuT remains 3 only for both clear and 

nanofluid. Whereas, the upper bound for NuF and NuC for clear fluid is 3 but for nanofluid it is 

not fixed.  

 

From  Figs. 3a and 4a we observe that as the Soret parameter CTN  increases, the value of NuT 

and NuF decreases, thus showing a decrease in the rate of heat and mass transport, while the 

Solute concentration Nusselt number  NuC (Fig. 5a) increases with increase in Soret parameter 

CTN  implying that Soret parameter CTN  enhances the Solute concentration Nusselt number. We 

observe that as the Dufour parameter TCN  (Figs. 3b, 4b and 5b) and Solutal Rayleigh number Rs 

(Figs. 3c, 4c and 5c) increases, the value of NuT, NuF and NuC decreases, thus showing a 

decrease in the rate of heat and mass transport.  
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The linear solutions exhibit a considerable variety of behavior of the system, and the transition 

from linear to non-linear convection can be quite complicated, but interesting to deal with. It is 

needed to study a time dependent results to analyze the same. The transition can be well 

understood by the analysis of equation (60) whose solution gives a detailed description of the 

two dimensional problem. The autonomous system of unsteady finite amplitude equations is 

solved numerically using the Runge-Kutta method. The Nusselt numbers are evaluated as the 

functions of time t, the unsteady transient behavior of NuT, NuF and NuC is shown graphically in 

Figs. 6a-g, 7a-g and 8a-g respectively. 

 

These figures indicate that initially when time is small, there occur large scale oscillations in the 

values of Nusselt numbers indicating an unsteady rate of heat and mass transport in the fluid. As 

time passes by, these values approach to steady state corresponding to a near convection stage. 

Figs. (6a, 7a, 8a), (6b, 7b, 8b), (6c, 7c, 8c) and (6d, 7d, 8d)  depicts the transient nature of 

thermal Nusselt number NuT,  concentration Nusselt number NuF number and solute Nusselt 

number NuC on nanoparticle concentration Rayleigh number Rn, nanofluid Lewis number Ln, 

modified diffusivity ratio AN  and Solutal Rayleigh number Rs. It is observed that as Rn, Ln, AN

and Rs increases NuT, NuF and NuC increases, thus showing an increase in the heat and mass 

transport, which are the similar results observed by Agarwal et al. [24]. From Figs. (6d, 7d, 8d) 

we observe that viscosity ratio   increases the heat and mass transports and in Figs. (6e, 7e, 8e) 

we observe that as conductivity ratio  increases the NuT, NuF and NuC decreases indicating that 

there is retardation on heat and mass transports. Figs. (6g, 7g, 8g) depicts the transient nature of 

Vadász number Va. It is observed that as Va increases NuT, NuF and NuC increases, thus 

showing an increase in the heat and mass transport. 

 

 From the figures we can observe that the value of thermal Nusselt number NuT starts from 1, the 

value of nanoparticle concentration Nusselt number NuF starts from 6 and the value of solute 

concentration Nusselt number NuC starts form 1.75. 

 

Conclusions 

We considered linear stability analysis in a horizontal porous medium saturated by a nanofluid, 

heated from below and cooled from above, using Darcy model which incorporates the effect of 
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Brownian motion along with thermophoresis. Further the viscosity and conductivity dependence 

on nanoparticle fraction was also adopted following Tiwari and Das [20]. Linear analysis has 

been made using normal mode technique. However for nonlinear analysis truncated Fourier 

series representation having only two terms is considered. We draw the following conclusions 

 

1. For stationary mode Soret parameter 
CTN and Dufour parameter 

TCN have a stabilizing 

effect while Solutal Rayleigh number Rs destabilize the system. 

 

2. For oscillatory mode Soret parameter CTN and Dufour parameter TCN  have a stabilizing 

effect while Solutal Rayleigh number Rs  destabilize the system. 

 

3. The  value of transient Nusselt numbers NuT starts from 1, NuF starts from 6 and NuC 

starts form 1.75. 

 

4. The effect of time on transient thermal Nusselt number, nanoparticle concentration 

Nusselt number and solute concentration Nusselt number is found to be oscillatory when t is 

small. However, when t becomes very large Nusselt numbers approaches to the steady value. 

 

List of Symbols 

C solute concentration 

BD  Brownian diffusion coefficient ( 2m s )  

TD  thermophoretic diffusion coefficient ( 2m s ) 

H  dimensional layer depth ( m ) 

k  thermal conductivity of the nanofluid (W/m K) 

mk  overall thermal conductivity of the porous medium saturated by the nanofluid      

                      (W/m K) 

K permeability ( 2m ) 

Le thermo-solutal Lewis number 

Ln  Lewis number 

AN  modified diffusivity ratio 
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BN  modified particle-density increment 

CTN  Soret parameter 

TCN  Dufour parameter 

*p  pressure (Pa) 

p  dimensionless pressure,    *

fp K   

a  non dimensional acceleration coefficient 

Va Vadász number 

TRa  thermal Rayleigh- Darcy number 

Rm  basic-density Rayleigh number 

Rn  concentration Rayleigh number 

Rs solutal Rayleigh number 

*t  time (s) 

t  dimensionless time,  * 2

ft H  

*T  nanofluid temperature (K) 

T  dimensionless temperature, 
* *

* *

c

h c

T T

T T




 

*

cT  temperature at the upper wall (K) 

*

hT  temperature at the lower wall (K) 

 , ,u v w  dimensionless Darcy velocity components  * * *, , mu v w H  (m/s) 

v  nanofluid velocity (m/s) 

 , ,x y z  dimensionless Cartesian coordinate  * * *, ,x y z H ; z is the vertically upward  

 coordinate 

 * * *, ,x y z  cartesian coordinates 

 

Greek symbols 

f        thermal diffusivity of the fluid, 2(m/s )  

C         solutal volumetric coefficient ( 1K  ) 

T  thermal volumetric coefficient ( 1K  ) 
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  viscosity variation parameter 

  porosity 

  conductivity variation parameter 

  viscosity of the fluid  

  fluid density 

p  nanoparticle mass density 

  thermal capacity ratio 

*  nanoparticle volume fraction 

  Relative nanoparticle volume fraction,
* *

0

* *

1 0

 

 




 

Subscripts/superscripts 

b       basic solution 

f       fluid 

p       particle 

 

*       dimensional variable 

'        perturbed variable 

St       stationary 

Osc                 oscillatory 
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